Sains Malaysiana 53(9)(2024): 2099-3009
http://doi.org/10.17576/jsm-2024-5309-07
Korelasi
Bersyarat dan Limpahan Kemeruapan bagi Pulangan Harga SMR20 dan Pulangan
Pasaran Niaga Hadapan Getah (TOCOM, SICOM dan SHFE)
(Conditional Correlation and Volatility
Spillover: Case on SMR20 and Futures’ (TOCOM, SICOM and SHFE) Returns)
SITI MAHIRAH
ABDUL GANI*, ZAIDI ISA & MUNIRA ISMAIL
Jabatan
Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 15 Mei 2024/Diterima: 5 Julai 2024
Abstrak
Malaysia
adalah di antara negara pengeluar utama bagi getah asli. Terdapat pelbagai
faktor yang boleh mempengaruhi harga getah asli (asas dan bukan asas). Salah
satu faktor tersebut adalah pasaran niaga hadapan. Pasaran niaga hadapan
memainkan peranan yang penting dalam pasaran semasa sebagai alat lindungan
nilai dan mekanisme penentuan harga. Pasaran niaga hadapan juga terlibat dalam
penemuan kesan anjur-susul dengan pasaran semasa. Kajian ini menerangkan
hubungan kemeruapan harga getah asli Malaysia gred SMR20 dengan tiga pasaran
niaga hadapan utama iaitu Bursa Komoditi Tokyo (TOCOM), Bursa Komoditi
Singapura (SICOM) dan Bursa Hadapan Shanghai (SHFE). Berdasarkan hasil empirik
daripada model bivariat GARCH Korelasi Bersyarat Dinamik (DCC GARCH), terdapat
kesan masa turun-naik dan korelasi bersyarat dinamik yang bererti antara SMR20
dan pasaran niaga hadapan. Hasil model GARCH Baba, Engle, Kraft dan Kroner
(BEKK) menunjukkan bahawa terdapat kesan kemeruapan melimpah yang mana
kemeruapan SHFE melimpah ke SMR20 dan sebaliknya bagi SICOM dan TOCOM.
Kata kunci: Bivariat GARCH;
korelasi bersyarat; limpahan kemeruapan
Abstract
Malaysia
is one of the top producer’s countries of natural rubber. The price of natural
rubber is often affected by fundamental factors but also non-fundamental ones
such as the futures market. Futures market plays a vital role in the spot
market as a hedging and price mechanism tool and has an established lead-lag
relationship with the spot market. This paper describes the relationship of the
price’s volatility of Malaysia’s natural rubber SMR20 (Standard Malaysian
Rubber 20) in the spot market against rubber futures markets Tokyo Commodity
Exchange (TOCOM), Singapore Commodity Exchange (SICOM) and Shanghai Futures
Exchange (SHFE). These three futures markets were considered to have the most
effect on Malaysia’s natural rubber physical market. The empirical results from
bivariate Dynamic Conditional Correlation Generalized Autoregressive
Conditional Heteroscedasticity (DCC GARCH) model indicates that there is
evidence of time-varying and a significant dynamic conditional correlation
between SMR20 and futures market. The results of the bivariate Baba, Engle,
Kraft and Kroner (BEKK) GARCH model shows the presence of volatility spillover
effect. The results show that the volatility of SHFE spills over to SMR20 and
vice versa for the other two futures markets (SICOM and TOCOM).
Keywords: Bivariate GARCH; conditional correlation; volatility spillover
RUJUKAN
Bauwens, L.,
Laurent, S. & Rombouts, J.V.K. 2006. Multivariate GARCH Models: A survey. Journal
of Applied Econometrics 21(1): 79-109. https://doi.org/10.1002/jae.842
Bollerslev, T.
1990. Modeling the coherence in short-run nominal exchange rates: A
multivariate generalized arch model. The Review of Economics and Statistics 72: 498-505.
Boonyanuphong,
P. & Sriboonchitta, S. 2014. An Analysis of Volatility and Dependence
between Rubber Spot and Futures Prices using Copula-Extreme Value Theory.
Springer International Publishing Switzerland. Vol. 251.
https://doi.org/10.1007/978-3-319-03395-2
Booth, G., So,
R.W. & Tse, Y. 1999. Price discovery in the German equity index derivatives
markets. The Journal of Futures Markets 19(6): 619-643.
Burger, K. &
Smit, H.P. 1989. Long-term and short-term analysis of the natural rubber
market. Weltwirtschaftliches Archiv 125(4): 718-747.
https://doi.org/10.1007/BF02696826
Burger, K.,
Smit, H.P. & Vogelvang, B. 2002. Exchange rates and natural rubber prices,
the effect of the Asian crisis. Xth EAAE Congress ‘Exploring Diversity in
the European Agri-Food System. hlm. 1-24.
Chang, C.L.,
Khamkaew, T., McAleer, M. & Tansuchat, R. 2011. Modelling conditional
correlations in the volatility of asian rubber spot and futures returns. Mathematics
and Computers in Simulation 81(7): 1482-1490.
https://doi.org/10.1016/j.matcom.2010.07.004
Dajčman, S.
& Festić, M. 2015. Interdependence between the Slovenian and European
Stock Markets – A DCC-GARCH analysis. Economic Research-Ekonomska
Istraživanja 25(2): 379-395. https://doi.org/10.1080/1331677x.2012.11517513
Darrat, A.F.,
Rahman, S. & Zhong, M. 2002. On the role of futures trading in spot market
fluctuations: Perpetrator of volatility or victim of regret? Journal of
Financial Research 25(3): 431-444.
Engle, R. 2002.
Dynamic conditional correlation: a simple class of multivariate generalized
autoregressive conditional heteroskedasticity models. Journal of Business
& Economic Statistics 20(3): 339-350.
https://doi.org/10.1198/073500102288618487
Feng, S.X.B.,
Lin, S.X.W. & Ho, D. 2003. Spillover effects in the Malaysian palm oil
futures and cash markets. Malaysian Journal of Economic Studies 40(1/2):
89-103.
Kang, S.H.,
Cheong, C. & Yoon, S.M. 2013. Intraday volatility spillovers between spot
and futures indices: Evidence from the Korean Stock Market. Physica A:
Statistical Mechanics and Its Applications 392(8): 1795-1802.
https://doi.org/10.1016/j.physa.2013.01.017
Khin, A.A.,
Wong, H.C. & Ung, L.Y. 2016. Impact of exchange rate volatility on
Malaysian natural rubber price. International Conference on Accounting
Studies (ICAS). hlm. 5-10.
https://www.researchgate.net/publication/312017025_Impact_of_Exchange_Rate_Volatility_on_Malaysian_Natural_Rubber_Price
Khin, A.A.,
Zainalabidin, M. & Hameed, A.A.A. 2012. The impact of the changes of the
world crude oil prices on the natural rubber industry in Malaysia. World
Applied Sciences Journal 20(5): 730-737. https://doi.org/10.5829/idosi.wasj.2012.20.05.2507
Kuiper, W.E.,
Pennings, J.M.E. & Meulenberg, M.T.G. 2002. Identification by full
adjustment: Evidence from the relationship between futures and spot prices. European
Review of Agriculture Economics 29(1): 67-84. https://doi.org/10.1093/erae/29.1.67
Ledoit, O.,
Santa-Clara, P. & Wolf, M. 2003. Flexible multivariate GARCH modeling with
an application to international stock markets. Review of Economics and
Statistics 85(3): 735-747. https://doi.org/10.1162/003465303322369858
Li, M. &
Yang, L. 2013. Modeling the volatility of futures return in rubber and oil-A
Copula-based GARCH model approach. Economic Modelling 35: 576-581.
https://doi.org/10.1016/j.econmod.2013.07.016
Manera, M.,
Nicolini, M. & Vignati, I. 2012. Returns in commodities futures markets and
financial speculation: A multivariate GARCH approach. Fondazione Eni Enrico
Mattei International Conference 23: 1-50.
https://doi.org/10.2139/ssrn.2041177
Marshall, A.,
Maulana, T. & Tang, L. 2009. The estimation and determinants of emerging
market country risk and the dynamic conditional correlation GARCH model. International
Review of Financial Analysis 18(5): 250-259.
https://doi.org/10.1016/j.irfa.2009.07.004
Mohan, S. &
Love, J. 2004. Coffee futures: Role in reducing coffee producers’ price risk. Journal
of International Development 16(7): 983-1002.
https://doi.org/10.1002/jid.1158
Moosa, I.A.
& Al-Loughani, N.E. 1994. Unbiasedness and time varying risk premia in the
crude oil futures market. Energy Economics 16(2): 99-105.
https://doi.org/10.1016/0140-9883(94)90003-5
Quan, J. 1992.
Two step testing procedure for price discovery role of futures prices. The
Journal of Futures Markets 12(2): 139-149.
Sadali, N.H.
2013. The determinant of volatility natural rubber price.
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2276767
Silvapulle, P.
& Moosa, I.A. 1999. The relationship between spot and futures prices:
Evidence from the crude oil market. The Journal of Futures Markets 19(2): 175-193. https://doi.org/10.1002/fut.20121
Silvennoinen, A.
& Teräsvirta, T. 2009. Multivariate GARCH Models. In Handbook of
Financial Time Series, disunting oleh Mikosch, T., Kreiß, J.P., Davis,
R. & Andersen, T. Berlin, Heidelberg: Springer. hlm. 201-229.
Song, M., Fang,
K., Zhang, J. & Wu, J. 2016. The co-movement between Chinese oil market and
other main international oil markets: A DCC-MGARCH approach. Computational
Economics 54: 1303-1318. https://doi.org/10.1007/s10614-016-9564-5
Telser, L.G.
1958. Futures trading and the storage of cotton and wheat. Journal of
Political Economy 66: 233-255.
Wang, H.H. &
Ke, B. 2005. Efficiency tests of agricultural commodity futures markets in
China. Australian Journal of Agricultural and Resource Economics 49(2):
125-141. https://doi.org/10.1111/j.1467-8489.2005.00283.x
Wang, Y. &
Wu, C. 2012. Forecasting energy market volatility using GARCH models: Can
multivariate models beat univariate models? Energy Economics 34(6):
2167-2181. https://doi.org/10.1016/j.eneco.2012.03.010
Working, H.
1949. The theory of the price of storage. American Economic Review 39(6): 1254-1262.
Working, H.
1948. Theory of the inverse carrying charge in futures market. Journal of
Farm Economics 30(1): 1-28.
Yang, J.,
Bessler, D.A. & Leatham, D.J. 2001. Asset storability and price discovery
in commodity futures markets: A new look. Journal of Futures Markets 21(3): 279-300.
*Pengarang untuk
surat-menyurat; email: mahirahgani@gmail.com
|